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Localised and delocalised descriptions of molec- 
ular electronic structure may be shown to be entirely 
equivalent when the total wave function is expressed 
as a Slater determinant of one-electron wave func- 
tions [l] , but the two descriptions appear to carry 
different implications concerning the equivalence of 
the valence electrons, as for example in methane 
[2], or ammonia [3], or water [3]. Consequently, 
it is necessary to define more closely the meaning 
of the term ‘equivalence’ in this context: two types 
of equivalence may be distinguished. 

Permutational Equivalence 

If any set of m objects within a molecule (atoms, 
orbitals, vectors, etc.) can be permuted amongst them- 
selves by the symmetry elements of the molecule 
to form a single cycle of length m they are permu- 
tationally equivalent. The maximum cycle length 
in a finite point group is equal to the order of the 
group: in the linear point groups, the maxima cycle 

length is 1 for C,, and 2 for D-h (see Table I). 
Examples involving a high number of permutationally 
equivalent bonds to a common atom are found in 
M(BH4)4 (M = Zr, Hf), and the ions M(NO,)z 
(M = Ce, Th). In M(BH&, the metal forms twelve 
permutationally equivalent bonds to the hydrogen 
atoms of the triply chelating BHT ligands; the overall 
symmetry is T for Zr [4] and Td for Hf [5]. In 

M(NO,)z, there are twelve permutationally equiv- 
alent M-O bonds, the overall symmetry being Th 
[6-81. In (CgHg)zM (M = Th, Pa, U, Np, Pu) of 
Dsh symmetry there are sixteen permutationally 
identical M-C distances [9], as there are also in 
(CsHs)#e- of Dsd symmetry [IO]. Perhaps the 
largest number of permutationally equivalent bonds 
in a rigid finite species, although not involving a 
common atom, is the 30 B-B distances in the ico- 
sahedral ion Blz 6; [ 111. 

Representational Equivalence 

If any set of objects, in symmetry adapted linear 
combinations, form a basis for an irreducible repre- 
sentation of the point group in question, they are 
representationally equivalent objects is equal to the 
dimension (Xi(E)) of the highest-dimensional sym- 
metry class i of the group, or exceptionally, to r 
times this dimension if this symmetry class occurs r 
times in the reducible representation. Values of these 
maximum dimensions are given in the Table. 

TABLE I. Structural Equivalence in Point Groups. 

Group 

Cl 

Ci, C,, C7, 

C2wC2h~D2 

Dzh 

S,, C, (n > 2) 

cZv> Cnh> D, (n > 2) 

Dnh (n > 2), Dnd 
T 

Td> Th, 0 

Oh 

I 

Ih 

C ‘V 
D mh 

Maximum permutational Maximum representational 
equivalence equivalence 

1 1 

2 1 

4 1 

8 1 

n 2 

2n 2 

4n 2 

12 3 

24 3 

48 3 

60 5 

120 5 

1 2 

2 2 
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transform for each value of the quantum number I, 
as the representations D(l) of the group R*(3): each 
representation D(r) is of dimension (21 t l), so that 
even in the isolated atom no set of, say, 2 or 4 or 6 
permutationally equivalent hybrid orbitals can be 
representationally equivalent: such equivalence is 
restricted to functions having a common value of 
1, ie. pure atomic orbitals: all atomic spectra have 
been interpreted on this basis [13], and the photo- 
electron spectra of atoms also confirm this restric- 
tion [14]. 

The correspondance of the angular functions 
Y(6,@) with the D(I) of dimension (21 t 1) is a 
consequence of building spherical symmetry into the 
hydrogenic atom solution of Schriidinger equation 

It follows therefore that for the finite groups, 
with the sole exception of Cr, the number of permu- 
tationally equivalent objects can always exceed the 
maximum number for representational equivalence, 
so that while a set of hybrid orbitals may be permu- 
tationally equivalent in a given point group they 
will generally not be representationally equivalent, 
and will transform as a sum of several irreducible 
representations. 

The significance of representational equivalence 
becomes obvious when molecular integrals of type 
C& IxI@I) are considered. Such integrals are identi- 
cally zero if @i and $j belong to different symmetry 
classes, and if &, 4 belong to one symmetry class 
and & and @, to another, only by remote chance 
will (&Ix{ @j, and (& Ixl&) have identical non-zero 
values: hence molecular orbitals of different sym- 
metry types between a common pair of atoms almost 
invariably have different energies, as conclusively 
shown experimentally by photoelectron spectro- 
scopy. In particular the four permutationally equiv- 
alent sp3 hybrids in Td give rise to two distinct sets 
of energy levels al and ts, the three permutationally 
equivalent sp* hybrids in DJh give rise to energy 
levels ai t e’, and even the two permutationally 
equivalent sp hybrids in Dmi, give rise to two distinct 
energy levels E’ and Xi: nor can four dsp* hybrids 

5 in D4h or six d sp3 hybrids in Oh give rise to single 
energy levels. No matter how many distinct electronic 
energy levels are generated in a particular point group 
by a set of hybrid orbitals, there is no question that 
the bonds concerned are all of the same length, disso- 
ciation energy, etc., for it is the permutational equiv- 
alence of the bonds which initially defines the point 
group within which the hybrids are constructed. 

A hybridisation scheme which uses n different 
types (defined by the 1 quantum number) of atomic 
orbital will rise to at least n distinct energy levels 
for bonding electrons: only simple atomic orbitals 
of definite quantum number 1 can give non-acciden- 
tally degenerate energies. If proper symmetry adapt- 
ed combinations are made of the hybrid orbitals on 
an atom, as they always should be when the basis 
orbitals span several symmetry classes, the resultant 
symmetry adapted orbitals are simply the atomic 
orbitals back again. 

The foregoing discussion in terms of molecular 
point groups applies to atoms in molecules, and it 
is interesting to consider the problem of hybrid 
equivalence without the symmetry constraints 

’ applied by the presence of peripheral atoms, such as 
in CH4. For the corresponding isolated atom or ion, 
C4 or Ne, having both the rotation and inversion 
symmetry of a sphere, the appropriate point group is 
R’(3) [12]. The angular parts Y of the wave func- 
tions of the hydrogenic atom 

J/ = R&r)Yr,,(~&) 

by writing V = -Ze*/r: assuming that the permittivity 
of the neighbouring space is isotropic, this central 
potential imposes R’(3) symmetry on the solutions 
to the equation. If the permittivity were anisotropic, 
then the symmetry imposed on the solutions would 
be lowered to D+(E, z E,, % E& or D2u (E, f E,. % 
E,). Once the spherically symmetric potential has 
been introduced, all the solutions of this wave equa- 
tion must conform to R*(3). Most of the properties 
of the angular functions Y(B,Q) are contained impli- 
citly in the character table for R’(3), which can be 
worked out without any reference to any aspect of 
quantum mechanics. Consequently using only this 
character table and straightforward descent of 
symmetry techniques, all the angular properties of 
the Y(f3,@) functions can be obtained without the 
need to solve the wave equation. When applying the 
transformations of molecular point groups to atomic 
orbitals, one is not applying symmetry to quantum 
mechanical functions previously innocent of sym- 
metry but merely lowering the symmetry from R’(3) 
to that of some other group, by the usual methods 
for .descent of symmetry, since all molecular point 
groups are sub-groups of R’(3). 

The interchangeability of the localised and delo- 
calised descriptions, at the level of the Slater deter- 
minant, will always occur, regardless of what basis 
orbitals are chosen: only subsequently, when the 
integrals C& iHl$j) are evaluated does the symmetry 
impose itself, and it does so via the symmetry 
intrinsic to the angular parts Y(8,$) of the basis 
atomic orbitals. The properties of the Y(B,$) 
functions in the context of the point group for a 
particular molecule are sufficient to block-diago- 
nalise the energy matrix, with separate blocks for 
each symmetry class. Regardless of what scheme of 
hybridisation is imposed on a molecular system, its 
electronic energy levels are determined by the values 
of the quantum number 1 of the atomic orbitals used 
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by the central atom, and for each value of 1, by the 
way in which the (21 + l)-fold degeneracy in R’(3) 
correlates with the point group in question. 
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